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Abstract. A new microscopic analysis of the central-peak phenomena caused by thermal 
Rnctuations near the order-disorder phase transitions is given. This is based on new results 
obtained r e ~ n t l y  in the dynamics of the disordered phase of ferroelectrics in the fnmework 
of the three-dimensional spin-; king model in a transverse field and perFomed by the Green 
function method. A mlcroscopic description for all the parameters of a phenomenological 
model adopted in the centra-peak problem is given. In particular, the central-peak observation 
conditions are formulated, A new critical behaviour of the cenh;ll relaxation-type mode. namely 
yE - (T - T#I4 is found. A minimum of the $08 mode is predicted above the critical 
tempmature T,. 

1. Introduction 

The dynamic behaviour of crystals undergoing a structural phase transition can be described 
in terms of instability of the collective Goldstone-type soft mode, which vanishes at the 
transition temperature Tc, namely &T) - IT - T$' ( y  is the susceptibility exponent). 
The soft-mode picture based on the ideas of Anderson and Cochran was established in the 
1960s. It is remarkable that it follows from the mean-field approximation ( y  = I), which 
is in qualitative agreement with experiment [l] and, on the other hand, is also capable of 
describing critical fluctuations. 

A new feature of the structural phase transitions is characterized by a new distinct time 
scale, related to the central-peak (CP) phenomenon, instead of a single peak suggested by 
the soft-mode theory. This was first predicted by Cowley [Z] in 1970 and later discovered 
131 in  the elastic neutron-scattering spectra of strontium titanate. The CP phenomenon seems 
to be attributed to all structural phase transitions [4]. During the following decade it has 
been intensively studied by a great variety of experimental techniques, namely by neutron, 
light and Mossbauer scattering, electron and nuclear paramagnetic resonances, dielectric 
dispersion and ultrasound (see reviews in [S-71). The main features of the CP phenomenon 
can be summarized here as follows: 

(i) A diffuse-type central-mode (U, = 0) peak appears in the fluctuation spectrum of the 
order parameter below and above the phase transition temperature besides the renormalized 
soft-mode (&os) side-band peaks (figure 1). 

(ii) The CP (or the central-mode) intensity diverges but that of the overdamped soft 
mode remains finite as T + T,. 

5 Permanent address: Academy of Science of Ukraine Institute for Low Temperature Physics and Engineering, 
Kharkov, 310 164, Ukraine, 
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Figure 1. Schematic presentation of the order-parameter fluctuation spectrum in terms of the CP 
observable pxamerers introduced for the resonani.type soft mode (as, yJ and the relaxation- 
lype central mode (% = 0, yJ. One can distinguish three temperature regimes: A, T- C > T,. 
US b.% W VI: B, T - Tc < Tc. Or E yS 2 yc; C. T - Tc <c T,. or ys W ye. 

As achieved in experiment, the central-mode width yc is at least three orders of 
magnitude smaller than the soft-mode width ys. The critical narrowing of the CP, which is 
observed close to Tc, gives evidence of a very slow regime of motion, which in most cases 
could not be resolved because the characteristic measurement frequency exceeds yc. 

Besides the dynamic CP effects under discussion a completely static (elastic) CP 
component has been revealed in light-scattering experiments [SI in the paraelectric phase 
of KHzPO4 (KDe)-type crystals. As shown by Chaves and Blinc [9] this effect is due to 
long-range strain interactions produced by dislocations and can be strongly suppressed by 
annealing [ l o ] .  

By means of parametrizing the experimental data for the spectral profiles I ( @ ,  T) in 
different materials a CP phenomenological model has been proposed [6,7,11], namely 

The CP auxiliary parameters 8 and U of unknown nature have been suggested to describe 
the interaction of a trial undamped soft mode 00 with some unspecified degree of keedom 
(relaxation mode) in terms of the coupling strength S and Debye relaxation time I / w .  The 
fitting of energy fluctuation spectra with equations ( l a )  led to the CP description in terms 
of observable parameters yc, ys and os discussed above as well as to the formulation of CP 
observation conditions imposed on the auxiliary parameters in the critical region [6,7, 1 1 1 ,  
namely 

( Ib )  y , - t v T ,  4 O ~ - + O J ~ = U J ~ + ~ ~  a s T + T ,  w i t h J , v > > q .  
oca 
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One can see that the phenomenological description (lb) based on the analysis of I ( @ ,  T) 
given in ( l a )  is far from complete. It does not include a description of the soft-mode 
parameters and leaves the CP observation conditions unspecificd. The first can be completed 
by the Green-function-poles analysis but the second needs the CP microscopic mechanisms 
to .be clarified. 

There were a number of attempts to identify on a microscopic level a CP mechanism 
and thus to analyze the origin of the relaxation mode mentioned above. It is remarkable 
that the first theoretical analyses were focused on the effects of the local order-parameter 
thermodynamic fluctuations (intrinsic mechanism). The role of these fluctuations driven 
by intrinsic dynamics was first demonstrated by Feder [13,15] in the framework of the 
anharmonic phonon modelt [12]. The importance of including short-range effects in the 
dynamics of ferroelectric transitions had also been pointed out earlier by Houston and Bolton 
[16]. Blinc and h k S  [14] have proposed a phenomenological stochastic description of the 
local order polarization effects. Probably the first microscopic version for the CP intrinsic 
mechanism was given by Takada et al [I71 in terms of the local fluctuating molecular field 
(as a microscopic analogue of the stochastic field [ 141) in the Framework of the perturbation 
theory applied to the Green function used by Matsubara. 

Another theoretical description of the CP intrinsic mechanism in the ordered phase 
has been proposed by Kiihnel ef al [IS]. This is based on the generalized Hartree-Fock 
approximation to the Green function used by Zubarev and developed in terms of long-range 
pseudo-spin (spin-wave (sw)) excitations. It was shown in particular that the relaxation 
mode is due to the following three kinds of interaction of the collective excitations: two 
sw excitation scattering processes: direct decay processes of one sw excitation to two 
SW excitations; back-generation processes. These results, being formally extended to the 
disordered (paraelectric) phase, leave only direct decay processes, which in turn disappear 
in the critical long-wave limit [IS]. This means that sw interactions should be revised above 
the critical temperature in view of the overdamping (short-lived) character of the softmode 
excitations. In other words, short-range (or long-wave) effects should be taken into account 
in the description of the decay of the local order parameter fluctuations. From this point of 
view, Binder’s [19] approach to the description of thermal fluctuations in terms of compact 
clusters, as correlated regions of the local order parameter, looks more suitable for the CP 
intrinsic mechanism problem. 

A major disadvantage of the theoretical approach based on Mori’s continued-fraction 
representation [ZO] is due to the necessity (caused by fraction truncation) of introducing 
a semiphenomenological description for the relaxation mode. Within this approach the 
extremely narrow CP can be predicted for the highly anisotropic short-range interaction [ZI], 
which is qualitatively equivalent to one-dimensional results obtained in terms of non-linear 
solitons [22] and are more suitable for quasi-one-dimensional PbHP04 (see, for example, 
the analysis given by De Carvalho and Salinas [23]). 

Another problem arises in regard to the adequacy of the Ising model in a transverse field 
for describing dynamical problems near the @ansition temperature. The CP problem analyses 
in the scope of the three-dimensional model under discussion but extended by forth-order 
pseudo-spin interactions [24] and interactions with an external anharmonic acoustic phonon 
branch [25] have been given by Wesselinowa. In the Framework of the approach [I91 it 
was shown [24] that higher-order pseudo-spin interactions can be effectively included in 
the model exchange interaction and, therefore, do not change the CP intrinsic mechanism. 

t The king model in a transverse field is more appropriate for the analysis of Ole order-disorder swcture phase 
u’ansitions [I]. All lheoretical papers referenced below employ this model. 
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In the second case [U], in contrast, the external anharmonic phonon branches have become 
responsible for the origin of the relaxation mode, such that its width has the same order 
of magnitude as that for the anharmonic phonons. Qualitatively, the same result has been 
obtained early in the scope of the phonon anharmonic model [12]. It has also been noted 
[5] that this is not the case for the observed CP phenomenon. 

Fluctuations caused by extrinsic mechanisms (produced by defects, impurities, surfaces, 
etc), which can also contribute to the CP effects, have been estimated [26]. As in the case of 
the external acoustic mode, they lead to a broad relaxation mode and, thus, to a too broad 
central mode, which is not observed in the CP critical narrowing. 

Some experiments give clear evidence for the occurrence of a CP phenomenon as ideal 
crystal behaviour [6]. Moreover, an EPR study [27] of CP fluctuations in ADA-ADP mixed 
crystals as well as a direct estimation [28] of the order-parameter fluctuation spectra for 
deuterated KDP crystals also give clear evidence for dynamic fluctuation-cluster effects [19] 
rather than relaxation defect effects [26]. 

Recently new results on the dynamics of the paraelectric phase have been obtained 
[29]. These are based on Green function analysis by Zubarev which was developed for a 
three-dimensional king model in a transverse field within a self-consistent cluster scheme 
avoiding the perturbation theory approximation. The main goal of the current paper is to 
give a further microscopic description of the CP intrinsic mechanism in view of recent results 
in the dynamics of order-disorder phase transitions. 

V B Koksheneu and A S Chaves 

2. Central-peak parameters 

Before performing a microscopic analysis let us first extend equations ( lb)  to all observable 
parameters. The fluctuation energy spectrum excitations are determined by the poles of the 
Green function ( l a ) ,  namely 

z3 - uzZ + wkz  - uwi = o with z = io. (20) 

Because the determinant of the third-degree equation with real coefficients is positive, one 
can parametrize its solutions in the following way: 

21 = Yc 

where the CP observable parameters ye, ys and 0, have been introduced above (see also 
figure 1). Exact solutions for poles ( l a )  have been obtained by Cardan's formula known for 
the cubic equation and these are represented in figure 2. They have also been approximated 
in different ranges (denoted A and C; see also definition in figure 1) of the auxiliary 
parameters: 

(2b) * I  
z2 = z3 = zys + iw, or w1 = -iy, w2.3 = f w ,  - i$ys 
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Figure 2. Excitation frequencies (or energies) of the fluctuation spectrum versus (he CP auxiliary 
parameters within the phenomenological model ( I ) ,  where os is the renormalired soft-made 
frequency. ys is the renormalized sott-mode Width and yc is the central-mode width. The lines 
represent the Green function poles (2). The mow indicates the critical regime range (see alw 
figure 1).  

The CP observable parameters of the phenomenological model in the critical region (3b) 
complete those given in (Ib) and, on the other hand, are common to the different microscopic 
theories mentioned in the introduction. Nevertheless, the question of whether the CP 
observation conditions, approximately given in (3b). will correspond to (Ib) suggested in 
[ l  I], has different answers within different microscopic considerations, which, in particular, 
give different descriptions of the relaxation mode. In the case of v > our analysis also 
predicts the existence of a soft-mode minimum just above the critical region (figure 2). 

3. Microscopic analysis 

In the displacive-type crystals, one deals with phonon condensation at Tc and certain 
atomic displacements, which play the role of the order parameter. In the case of order- 
disorder-type crystals the order parameter, spontaneous macroscopic polarization, describes 
a rearrangement (or rotation) of a small group of atoms in the ferroelectric unit cell whereas 
other a tom remain unchanged [I]. In the particular case of hydrogen-bonded ferroelectrics 
a microscopic description is as follows. Each proton moves between two equilibrium states 
in the double-well potential with the quantum tunnelling frequency r and interacts with 
the n m e s t  neighbour with energy J I ~ .  Thus, the (pseudo-spin S = 1) king model in the 
transverse field can be successfully employed for orderdisorder ferroelectrics [l,  14,21,28]: 
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In the paraelectric phase, N spins precess independently with the frequency r‘ and are 
subject to the effective exchange J f y ,  which results in some local ordering effects, which 
can been discussed in terms of stochastic [14] or fluctuating molecular [17] fields. To 
describe these effects we introduce the two-site doubletime retarded Green function 

V B Kokshenev and A S Chaves 

G J ~ N  = -iQ(W&(t). s~(0)I)r  = ((~~(Wz~4N (5) 

with 

where (. . .)T means a statistical average with Hamiltonian (7) and @ ( t )  is the theta function. 
Developing the Heisenberg equations for the Fourier-time transformed Green function we 
have I291 after double-time differentiation 

F f / ” / 4 )  = ( ( ~ S ~ / ( ~ ) S ~ ” ( ~ ) I l S ~ ( O ) ) )  &f = s, - (SX/)T 

where a new irreducible Green function F/p,p describes fluctuations of local polarizations 
in terms of threesite clusters. The canonical mean-field (MF) approximation ignores these 
fluctuations, namely 

G ~ ) ( W ~ ,  T) = n-Ira(T)[w2 -W;(T)]-~ w;(T)  = r[r - J,O(T)I (7 ) 

with 

59 = JOY9 Y, = $[cos(q,a) + cos(q,a) + cos(qxa)~ 

and leads to the undamped sw spectrum 09: 

w a ~ )  < 0 , ~ )  < ~ M ( T )  WO) = Jr[r + Joo(T)I 

which is unstable at the critical wavenumber q = 0 and critical temperature T,: 

If one includes a high-order Green function in equation (6), its solution can be represented 
in a general form, namely 

~ ~ ( 2 ,  T) = d r u ( T ) [ w 2  - U @ )  - A~(o~, T ) I - ~  (104 

which comparatively with (7) can be treated as a MF solution improved by correlation effects. 
The explicit form for the polarization operator 
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has been obtained [29] for the particular case of a four-sitecluster approximation. The 
closed system of equations of motion for the four-site fluctuation Green functions, 
generalized from that given in (6). have been obtained within the standard Tyablikov 
scheme 1301 and then exactly solved. Even the solution (10) is given in the wavenumber 
representation; a complete analysis of the equations of motion (6) has been done in the 
site representation which gives a major difference between the current cluster consideration 
and the others mentioned in the introduction. The first term in (lob) describes longitudinal 
fluctuations of the local parameter order and dominates at high frequencies, The second 
term dominates at low frequencies and characterizes reaction-polarization effects. 

Now we can give a microscopic description of all the parameters of the CP 
phenomenological model (1). From a comparison of the results (10) with (1) we have, 
for the particular case q = 0, 

Here we assume the existence of a low-frequency range w - < U near T N T, where 
the microscopic analogue of the CP auxiliary parameters 8 and U (equations (1)) can be 
introduced by means of relations following from (1 I), namely 

-1 
u i ( T ) = & T ) [ ( c )  ~ - ( c )  Jou(T) (?+-)+-I 1 1 . (12b) 

40(T)* 4U(T)* 4 sw 0 4  
9 sw 

Consequently, we have introduced the low-frequency 80 and infinitefrequency 8, limiting 
coupling strengths of the effective fluctuating mole~ular field. One can see that the reaction 
and molecular local order field effects dominate at low and high frequencies, respectively. 
The high-frequency limit 6, corresponds to the exact high-temperature limit result discussed 
in [20,31] in view of the high-temperature dynamics of the model (4); the low-frequency 
behaviour of the relaxation mode given in (12b) includes both reaction (first two terms) 
and molecular-field effects. The notation (. . .)sw stands for the summation over the sw 
spectrum given in (lob). Summation has been performed here as integration with the sw 
spectral density 

(13a) 

adopted for the cubic lattice taking into account the symmetry of interaction (8); the sw 
boundary frequencies are given in (9). The results of summation are 



5378 V B Kokshenev and A S C h a w  

60 

r - I  

- 

T 0 
I 1.2 1.4 1.6 lti8 2 2.2 2.& 2 . 6 -  

0. I r e = -  

0.01 ' 
I 1.02 1.04 1.m 1.08 1.1 i . r 2 ~ ,  

Figure 3. cp auxiliary parametcm (12) versus reduced temperature wilhin the microscopic model 
(4). whcre Tc is the critical temperature (9), w is Ihe trial sofl-mode frequency (9), So and S, 
are the coupling strenyls (Ik), yo is the low-frequency limit for the relaxation mode (I%), I' 
is the tunnelling frequency (4) and Jn is the effective interaction (8). 

One can see that the fourth-order high-frequency momentum (0i4)sw of the sw spectrum 
diverges at the critical temperature unlike the second-order momentum. Therefore. as 
follows from (12) and (13) in the critical regime the CP auxiliary parameters are 

(14) 

Their behaviour in the whole temperature range is illustrated in figure 3. The CP observable 
parameters in turn follow from (3) and (13): 

514 114 

T + T ,  y c - + r ( $ - i )  . -r(g- i )  

us -+ r with SO > vo 00 (15) 
and are shown in figure 4 for the particular case of a KDP crystal (Tc = 123 K, JO = 3r). 
Now the CP observation conditions (15) are given unambiguously. 
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4. Summary and discussion 

Investigations of the CP phenomena, which accompany SfllCNIe phase transitions, lead 
to deep insight into the dynamical mechanisms of phase transitions in complex crystals. 
Analytical results, even obtained within the simplest phase transition models, may serve as 
bases for further microscopic description of certain universal features of the smcture phase 
transitions. 

As already mentioned in the introduction, in the low-temperature ordered phase of 
crystals the cp intrinsic mechanism describes the process of order-parameter destruction 
in terms of decay and scattering processes of long-range excitations [IS]. In the high- 
temperature disordered phase this mechanism drives the embryonic formation of the 
ordered phase and can be characterized, in general, in terms of the parameters of the CP 
phenomenological model (1). The short-range correlations lead to the origin of compact 
clusters due to fluctuations of the local order parameter. The relaxation mode describes a 
local motion of clusters as a whole and is characterized by the mean thermal relaxation time 
I/u. Because the mean cluster size increases to infinity as the temperature goes to the critical 
temperature, one should expect a divergence of the mean relaxation time. Delocalized 
excitations of atoms included in clusters are characterized by the trial soft mode. Their 
dynamical interaction, characterized by the coupling strength 6 with the relaxation mode 
leads to the observable central and soft modes found in experiment (figure 1) and described 
within the phenomenological model adopted in the CP problem (figure 2). 

Different microscopic approaches to the CP intrinsic-mechanism problem based on the 
same model (4) suggests a different description of 6 and U. By comparing the result for 
the coupling strength 6, given in figure 3, with those obtained within Mori’s continned- 
fraction representation [20,21] and the Green function perturbation approximation [17] 
used by Matsubara we note a general qualitative correspondence in the whole frequency 
range (see figure 1 in [29]) and only the low-frequency range for the first and second cases, 
respectively. All methods under discussion predict an enhancement in the correlation effects 
in the disordered phase with temperature decrease, i.e. 6 - (w;’)AC and, therefore, remains 
finite in the critical range. Critically different results have been obtained for the case of 
the relaxation mode. As follows from (1%) in the critical region it is characterized by 

mq )sw , in contrast with U - 6 [17,20,21], which leads to a critical behaviour of 
the relaxation mode in the three-dimensional case and in turn to further critical narrowing 
of the central modet (15), namely ye - (T - Tc)5/4, 

Both phenomenological and microscopic model analyses illustrated in figures 2 and 4 
(inset), respectively, predict the existence of a soft-mode frequency minimum above Tc, 
which is caused by strong dynamic renormalization of the trial soft mode. This kind of 
temperature behaviour has been observed earlier for KDP-type crystals (see figure 13 from 

The main advantage of the king model in a transverse field over anharmonic lattice 
models is that it effectively includes high anharmonic motion of a certain group of atoms, 
which are responsible for the transition, in terms of pseudo-spin variables. Nevertheless, the 
problems of taking into account other branches of phonons and of including their anharmonic 
natures in an estimation of the CP characteristics remain unsolved [17,23,24,33,34]. 

In real crystals of the KDP family there is a strong coupling of the ferroelectric soft 
mode with one optic and one acoustic transverses phonon branch [35]. The main effect of 

- ( -4 -1/2 ‘ 

WI). 

t It is interesting to note that the Same behaviour has been predicted for the central mode in the one-dimensional 
case (see (1%) from [ZI]). 
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J 0 = 3 1  
0 

E y r e  4. ce observable panmeten venw temperature within the microscopic model (4) for 
the case of the KDP crystal (T. = I?,? K). The lines represent exx l  solutions of the cubic 
equation (2) for regime C (see figure 1) and approximate solutions (34 for regime B (insct). 
The microscopic CP auxiliaq panmeten given in figure 3 were used for regime C. In lhe case 
of %pime B (inset the relaxation time I fw was approximated by w = Jw,:+s:) adopted in 
high-tempemure dynamics 1311. The nomtion corresponds to that in figures 1 and 2. 

the latter is to increase the transition temperature T," from the 'clamped' value to the 'free' 
value, namely T, rx T: + 4.3 K. This shift was first derived by Lagakos and C u m i n s  [SI 
from the Raman scattering experiments. According to our theoretical estimation given in 
the appendix and based on piezoelectric effect, the shift is 3.3 K. 

As to coupling with optical phonons, phenomenological coupled-oscillator models were 
widely adopted (see, e.g., [SI, and references therein) and much discussion has appeared 
concerning the choice of the phase of the complex coupling (as fitting) parameters. For 
the analysis of light-scattering experiments, one can use arbitrary representations for the 
coupled mode system, connected to each other by a unitary transformation. However, when 
making experiments in the wavevector region of the polaritons, one can in fact determine 
uniquely the phase under discussion [36]; nevertheless, this has not been done, and so the 
uncertainty remains. As was pointed out in [SI the convenience of choosing a pure imaginary 
coupling was only based on the fact that it does not affect the static susceptibility. We guess 
that the pure imaginary coupling approximation is inconsequential. Even considering the 
same (imaginary) coupling, different investigators came to different conclusions. It was 
found by Lagakos and Cummins [SI for the K D P  crystal that the soft-mode behaviour is 

have the non-linear behaviour mentioned above. The discrepancy could be due to a poor 
theoretical description of the coupled overdamped mode and has been discussed earlier 
[32,35] in terms of strong 'correlation' between the frequency U, and its linewidth, both 
of which are used as fitting parameters in the Raman spectra analysis. In the overdamped 
regime, because of this correlation, the simultaneous determination of the frequency and 
linewidth based on scattering data is imprecise. Further theoretical consideration and more 
comprehensive analysis of experiments on this point would be needed. 

U$) (T - T,"), whereas SCaIpZO etal  1321 have argued that KDP, RDP and RDA Crystals 
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Appendix. Piezoelectric shift of the transition temperature 

Within the framework of the Landau theory of the second-order structural phase transitions 
[ 11 we expand the Gibbs free energy of the paraelectric phase in the electric displacement 
D3 (up to the fourth order) and strain x.5 (up to the second order), namely 

Here C is the Curie constant, C2” is an elastic coefficient, hT6 is a piezoelectric coefficient 
and b is the non-linear electric susceptibility. The standard thermodynamic analysis leads 
to the free Curie temperature: 

which in turn gives the shift T, - T; = 3.3 K if one employs the tabulated values [37] for 
the coefficients involved in (AZ). 
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